
Operating Systems 2016/17
Tutorial-Assignment 9

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Question 9.1: Memory Management Basics

a. Discuss the difference between a virtual and a physical address.

Solution:
The difference occurs only in systems with no fixed 1:1 mapping of the applications’ ad-
dresses to the physical addresses. In such systems, each executable program belongs to
a virtual address space. All program addresses in fact are virtual addresses, that is, none
of the instructions deal directly with physical addresses.

During execution, however, parts of the programs are mapped to physical memory. In order
to access the contents, a memory management unit (MMU) translates virtual addresses
into physical addresses via some mapping information, such as a base register or a page
table in a paging-based memory system.

Addresses within a binary file that the compiler or the linker has computed and even the
addresses resolved by the loader are all virtual addresses. The physical addresses are
the addresses that are delivered to the main memory chips when an instruction fetch or a
data access is executed.

b. Explain the difference between external and internal fragmentation.

Solution:
If your memory manager only offers memory blocks of fixed sizes, then internal fragmen-
tation cannot be avoided: You often get more memory than you have asked for. The unused
portion of the memory (i.e., the difference between requested size and block size) cannot
be used and is called internal fragmentation.

On the other side, there are memory managers which can offer memory blocks of almost
any size. Due to different lifetimes of these tailored memory blocks, the memory as a whole
may be scattered: It may contain a lot of memory holes, each of them being too small for
an upcoming memory request, although the total of free memory would be sufficient. The
sum of the currently not usable memory is called external fragmentation.

Requested

Fixed Allocation Unit
(e.g, 4KiB, 1 Page)

Wasted

Internal
Fragmentation

Allocation as
requested

External
Fragmentation

Both types of fragmentation can happen at the same time, for example if a fixed allocation
unit and segmentation for address translation is used. The free space in physical memory
may be too scattered to allow the allocation of a segment of a certain length (which must
be contiguous in physical memory), even if enough total free space is available (external
fragmentation). The restriction to allocate only in fixed units (e.g., the segment size must be
a multiple of 4 KiB) potentially wastes memory within a segment (internal fragmentation).

1

c. When is compaction a viable option to reduce external fragmentation?

Solution:
Compaction can only be done if all references to moved memory blocks can be upda-
ted. When using segmentation and external fragmentation in the physical address space
should be reduced, that can easily be accomplished by updating the segments’ base ad-
dresses. However, compaction may not be used for memory blocks allocated on the heap
of a C program with a call to malloc(). That is compaction cannot reduce the external
fragmentation in a native heap, because the heap is not able to reliably track and update
all pointers to the allocated memory.

Question 9.2: Segmentation

a. How does segmentation work?

Solution:
With segmentation, a virtual address space is regarded as a collection of segments. Each
segment represents a separate part of a program, such as the code, the stack, or some
library. Segments occupy contiguous parts of the virtual address space.

Virtual addresses are considered tupels, consisting of a segment number and an offset.
The segment number is used as an index into a segment table. A segment table contains
a number of entries, each of which consists of a segment base and a segment limit. The
base describes the starting address of the segment in physical memory, the limit specifies
the length of the segment.

A virtual address can be translated to a physical address with the following steps:

(a) The segment number of the virtual address is used as an index into the segment table
to find the correct segment table entry.

(b) The offset of the virtual address is compared against the limit of the segment table
entry. If it is larger or equal, the virtual address refers to a location outside the
segment, and an exception is raised.

(c) If the address is valid (i.e., inside the segment), the base value of the entry is added to
the offset of the virtual address. The resulting value is the desired physical address.

b. Assume a system with 16-bit virtual addresses that supports four different segments,
which uses the following segment table:

Segment Number Base Limit
0 0xdead 0x00ef

1 0xf154 0x013a

2 0x0000 0x0000

3 0x0000 0x3fff

Complete the following table and explain briefly how you derived your solution for each
row in the table.

Virtual Address Segment Number Offset Valid? Physical Address
3 0x3999

0x2020

0x0204 yes

yes 0xf15f

2

Solution:
The segmentation address is split as follows:

Segment Offset

15 13 0

Line 1:
To get the virtual address from the segment number and the offset, we can simply conca-
tenate the bits, which gives us: 0xf999

1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1

15 13 0

0xf 0x9 0x9 0x9

A lookup in the segment table reveals that the offset 0x3999 is smaller than the segment’s
limit of 0x3fff. We can therefore take the physical base of the segment and add the offset
to get the physical address.

Line 2:
We have to do the reverse operation and split the address 0x2020 into the segment index
and the offset part. This will give us segment number 0 and offset 0x2020. Since the offset
0x2020 is greater than segment 0’s limit, the virtual address is not valid and cannot be
translated to a physical address.

Line 3:
Line 3 constrains the virtual address to possess a valid translation with offset 0x0204.
We therefore must take segment 3. The valid virtual address is 0xC204 and the physical
address is 0x0204.

Line 4:
The last line demands the virtual address that translates to the physical address 0xf15f.
We can find the segment by subtracting each segments base address from the physical
address and check if the resulting offset is within the respective segment’s limits. This is
the case for segment 1, where 0xf15f - 0xf154 = 0x000b (smaller than 0x013a). We can
then use the method from line 1 to get the virtual address 0x400b.

Note: Because segment 2’s limit is 0, there cannot be a valid translation using this seg-
ment.

Virtual Address Segment Number Offset Valid? Physical Address
0xf999 3 0x3999 yes 0 + 0x3999

0x2020 0 0x2020 no Offset outside segment limit
0xC204 3 0x0204 yes 0x0204

0x400b 1 0x000b yes 0xf15f

3

